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2 Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India

3 Department of Economics, University of Wisconsin, Madison, Wisconsin, United States of America

4 Department of Economics, University of Missouri, Columbia, Missouri

5 Center for Limnology, University of Wisconsin, Madison, Wisconsin, United States of America

6 Harvard Forest, Harvard University, Petersham, Massachusetts, United States of America

7 National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom

8 Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, United States

of America

9 Department of Aquatic Ecology and Water Quality Management, Wageningen University,

Wageningen, The Netherlands

10 Integrative Ecology Group, Estacion Biologica de Donana, Sevilla, Spain

‡ These authors contributed equally to this work

∗ To whom correspondence should be addressed: sonia.kefi@univ-montp2.fr

Appendix S2: The three models used to generate the test data

sets

The three models we consider as same as in Dakos et al. 2011 [1]. We reproduce the equations and the

table containing parameters, their description and values here.
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Local positive feedback model with no patchy pattern

The first data set is based on a coupled vegetation-water dynamical model by Shnerb et al. (2003) and

Guttal and Jayaprakash (2007) [2, 3]. We denote the water and biomass density at location (i, j) in a

discretized two dimensional space by wi,j and Bi,j , respectively. Their coupled dynamics is given by

dwi,j

dt
= R− wi,j − λwi,jBi,j

+ D(wi+1,j + wi−1,j + wi,j+1 + wi,j−1 − 4wi,j) + σwdWi,j (1)

dBi,j

dt
= ρBi,j

(

wi,j −
Bi,j

Bc

)

− µ
Bi,j

Bi,j +B0

+ D(Bi+1,j +Bi−1,j +Bi,j+1 +Bi,j−1 − 4Bi,j) + σBdWi,j (2)

Mathematically, this model is equivalent to a discretized version of coupled stochastic reaction diffusion

equations. Local dynamics (also referred to as mean-field model) are based a coupled vegetation-water

dynamical model [2, 3] and shows a saddle-node bifurcation as the aridity increases.

Local facilitation model, yielding scale-free patchy vegetation

The second data set was derived from a stochastic cellular automaton model with discrete spatial and

time steps [4]. In this model, an ecosystem is represented by a grid of cells, each of which can be in

one of three possible states: vegetated (+), empty (o) or degraded (-). Empty cells represent fertile soil

whereas degraded cells represented eroded soil patches unsuitable for recolonization by vegetation. The

probability of transiting from one state to the other are given by:

w[0,+] = [δρ+ + (1− delta)q+](b− cρ+) (3)

w[−,0] = r + fq+|− (4)

w[+,0] = m (5)

w[0,−] = d (6)

A mean-field approximation of this model also exhibits a saddle node bifurcation as a function of
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aridity [4].

Scale-dependent feedback model, yielding periodic patterns

Here, we employed a stochastic version of a three partial differential equations model describing the

dynamics of vegetation biomass, soil water and surface water [5]. The equations are given by:

∂O

∂t
= R(t)− αO

P +W0k2

P + k2
+Do∇

2O + σdW (7)

∂W

∂t
= αO

P +W0k2

P + k2
− gmax

W

W + k1
P − rwW +Dw∇

2W + σdW (8)

∂P

∂t
=

(

cgmax

W

W + k1
− d

)

P +Dp∇
2P + σdW (9)
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Figure S1. Generic leading indicators in the three data sets plotted as a function of the value

of the driver (aridity increases from left to right along the x-axis). The black dots correspond to the

ten snaphots mentioned at the end of page 13, first paragraph, as those selected. Left: local positive feedback

model. Middle: local facilitation model (data transformed into quantitative data using 5x5 submatrices). Right:

scale-dependent feedbcak model. First row: Biomass. Red dots along the x-axis indicate the location of the

snapshots chosen for Fig. 1,3,5-7 of the main text. Second row: spatial variance. Third row: spatial skewness.

Fourth row: spatial correlation between near neighbors.
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Table S1. Model parameters and their values

Model

parame-

ter

Definition Value and unit

Local positive feedback model

wi,j Water moisture level in each grid cell (i, j) mm
Bi,j Vegetation biomass in each grid cell (i, j) g

D Exchange (diffusion) rate 0.05 day−1

λ Water consumption rate by vegetation 0.12 g−1day−1

ρ Maximum vegetation growth rate day−1

Bc Vegetation carrying capacity 1 g
µ Maximum grazing rate 2 day−1

B0 Half-saturation constant of vegetation consumption 1 g
R Mean annual rainfall .8-2mm day−1

σw Standard deviation of white noise on water moisture 0.1
σB Standard deviation of white noise on vegetation biomass 0.25
dWi,j White noise; uncorrelated in each grid cell 0.25

Local facilitation model

w[0,+] Colonization probability of an unoccupied site
w[−,0] Regeneration probability of a degraded site
w[

,
0] Mortality probability of an occupied site

w[0,−] Degradation probability of an unoccupied site
ρ+ Density of vegetated sites
qi|j Clustering vegetation intensity probability of finding a site j in state i (+, 0,−)
m Mortality probability of a vegetated site 0.1
f Local facilitation strength; maximum effect of a neighboring vegetation site on

the regeneration of a degraded site
0.9

β Intrinsic seed production rate per vegetated site; “survival probability”, “ger-
mination probability”

ǫ Establishment probability of seeds on 0 site in a system without competition
b Measures the severity of the environmental conditions (= βǫ); a lower b value

reflect a higher aridity level
0.3-1

δ Fraction of seeds globally dispersed 0.1
g Competitive effect of the global density of + sites on the establishment of new

individuals
031

c βg 0.3
r Regeneration probability of a − site without vegetated sites in its neighborhood 0.0001
d Degradation probability of 0 sites 0.2

Scale-dependent feedback model

P Plant density g m−2

W Soil water mm –
O Surface water mm –
c Conversion factor for water uptake to plant biomass 5 g m−2 mm−1

gmax Maximum specific water uptake 0.1
mmg−1 m2day−1

k1 Half saturation constant of water uptake by plants 5 mm

d Specific rate of plant density loss due to mortality 0.25 day−1

α Rate of surface water infiltration 0.4 day−1

k2 Plant density scale determining how surface water infiltration increases with P 5 g m−2

W0 Minimum surface water infiltration coefficient in the absence of plants 0.2
rw Soil water loss rate due to evaporation and drainage 0.4 day−1

R Rainfall 0.05-2 mmday−1

Dp Plant dispersal diffusion constant 0.01 m2 day−1

Dw Soil water diffusion constant 0.1 m2 day−1

Do Surface water diffusion constant 100 m2 day−1
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1. Dakos V, Kéfi S, Rietkerk M, van Nes E, Scheffer M (2011) Slowing down in spatially patterned

ecosystems at the brink of collapse. The American Naturalist 177: E153–E166.

2. Shnerb NM, Sarah P, Lavee H, Solomon S (2003) Reactive glass and vegetation patterns. Physical

Review Letters 90: 038101.

3. Guttal V, Jayaprakash C (2007) Impact of noise on bistable ecological systems. Ecological Modelling

201: 420-428.
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